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Abstract. Using the symplectic formalism of classical mechanics, a smooth holonomy effect
is identified in a special class of classical ergodic Hamiltonian systems (generalized canonical
families) that are cycled adiabatically. It is a smooth shift in a time-resembling observable
‘tempus’ that is canonically conjugated to the phase space volume contained in the energy shell.
The curvature 2-form of the adiabatic connection obtained is closely related to Hannay’s and
the Robbins–Berry 2-form. The measurability of the ‘tempus’ is discussed.

1. Introduction

When he introduced the classical analogue of Berry’s phase for adiabatically cycled
integrable Hamiltonian systems, Hannay [1] pointed out that it (‘Hannay’s angle’) had
no straightforward generalization to systems with non-integrable (and possibly chaotic)
dynamics. While Berry’s phase [2] and its generalizations [3–5] can be defined for all
quantum systems that have bound states, Hannay’s angles exist only for those classical
systems for which the motion at fixed external parameters is Liouville-integrable. Among
all classical Hamiltonian systems these form a set of vanishing measure [6]. Since Hannay’s
angles were shown to emerge from Berry’s phase when taking it to the classical limit [7], it
is natural to search for a classical analogue of Berry’s phase for non-integrable (and possibly
chaotic) systems. This search has not been successful, so far.

Using semiclassical methods Robbins and Berry [8] investigated systems with ergodic
dynamics, taking Berry’s 2-form [2] to the semiclassical limit, but were not able to interpret
their result in terms of holonomy [9]. From a classical point of view Hamiltonian systems
that are ergodic on the energy shell are the best non-integrable systems to study holonomy,
since a complete adiabatic theory exists for them [10]: the phase space volume that is
enclosed by the energy shell is the only smooth adiabatic invariant. A holonomy effect in
these systems can certainly not be a smooth shift on the energy shell, as pointed out by
Golin et al [11]. The reason for this is thesensitive dependence on initial conditionsthat
is inherent to ergodic systems with more than one degree of freedom.

In this paper a generalization of the so-called canonical families of ergodic Hamiltonian
systems is considered, which were introduced by Robbins [9]. For canonical families there
exists a parameter-dependent smooth canonical transformation, mapping the system at one
parameter value to the system at another one. Even though this condition seems to be rather
restrictive, many physically important situations are modelled by it. A rotated system, for
example, is a canonical family, since a rotation in configuration space is canonical.

For these systems a time-resembling observable ‘tempus’ is constructed, which displays
a smooth holonomy effect analogous to Hannay’s angles if the system is cycled adiabatically
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around a loop in parameter space. The result obtained is in full agreement with the above
remark by Golinet al [11]. Even though the ergodic systems are as ‘rare’ as the integrable
ones [6], and the generalized canonical families form an even smaller subset, they constitute
the first type of chaotic systems for which holonomy can be defined.

In order to derive the equations of motion it is useful to embed the non-autonomous
ergodic system into a larger autonomous system with two well separated time scales (slow–
fast system), in which the slow configurations take the role of external parameters [12].
A suitable coordinate transformation of the fast subsystem for fixed slow configurations
enables us to distinguish between dynamical and geometrical effects. The averaging of
the phase space functions of interest requires their smoothness [10], which can be verified
explicitly using this approach. Besides this technical advantage of the slow–fast systems,
this description is also more general, since it includes the possibility of a reaction force
of the fast subsystem onto the slow degrees of freedom, which is neglected in the non-
autonomous case. This reaction force has been described by Berry and Robbins [13, 9], and
an alternative derivation can be found in [14].

In the adiabatic limit the slow and the fast dynamics are separated and the slow degrees
of freedom can be integrated by themselves. The trajectory of the slow configurations is
introduced into the fast equations of motion.

The most important result of this paper is the existence of an observable of the ergodic
fast degrees of freedom that displays a smooth holonomy effect when the slow configurations
are cycled adiabatically. For integrable fast dynamics, holonomy was found to be a shift in
the angle variables that are canonically conjugate to the adiabatically invariant actions [1].
Therefore for ergodic systems the quantity locally conjugate to the adiabatically invariant
phase space volume is a good candidate to exhibit holonomy. For fixed external parameters
this quantity is proportional to time and will therefore be called ‘tempus’ in what follows.

As for Hannay’s angle, the geometric tempus cannot be defined for general curves in
parameter space, since it is not independent of the choice of coordinates. If, however, the
system is taken around a closed loop in parameter space, this gauge dependence is removed.
In this case the ‘tempus’ divides naturally into a dynamical and a geometrical part, both
of which are smooth and independent of the chaotic details of the motion. The deviations
of the average from the real dynamical ‘tempus’ can in general hide the geometric effects,
as was pointed out by Golin [15] for Hannay’s angle. For generalized canonical families,
however, these deviations are small and the geometric effects are indeed the first relevant
correction to the dynamical tempus.

This paper is organized as follows. In section 2 ergodic Hamiltonian systems are
discussed briefly, and the generalized canonical families are introduced. Section 3 describes
Hamiltonian slow–fast systems with fast dynamics governed by a generalized canonical
family. A transformation to coordinates is presented, in which the slow and fast variables
separate in the adiabatic limit. Assuming the slow equations of motion to be solved, in
section 4 we introduce the slow trajectory into the fast equations of motion, construct the
‘tempus’ and describe its dynamics. In addition to a dynamical part, we find a purely
geometrical one that is analogous to Hannay’s angle for the integrable case. To conclude,
the measurability of the geometric tempus, its independence of the choice of coordinates
and its geometrical interpretation are discussed.

2. Canonical families of ergodic Hamiltonian systems

Consider a Hamiltonian system withn degrees of freedom. Let the phase spaceM ⊂ R2n be
parametrized by canonical coordinates(p, q) and the Hamiltonian function be denoted by
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H(p, q) ∈ C2(M). For suitable energies the motion is confined to a(2n − 1)-dimensional
energy shellS(E) := {(p, q) ∈ M|H(q, p) = E}. In the following we assume that an
energy interval exists for which the motion isergodicon almost any given energy shell, i.e.
the time average of any smooth observable along almost any trajectory can be replaced by
the microcanonical average of that observable. (Microcanonical averages will be denoted
by 〈A〉 = ∫

dmEA(p, q), where dmE denotes the microcanonical measure on the energy
shell with energyE given by the initial conditions.) Instead of using the energy as a label,
a given energy shell can as well be characterized by the phase space volume it contains,

�(p, q) :=
∫

dp′ dq ′2(E(p, q) − H(p′, q ′))

provided that the motion is bounded and certain topological requirements are fulfilled [10]
(2 denotes the unit step function). We denote by(�1, �2) ⊂ R the interval of the phase
space volume, for which the motion is ergodic on almost all energy shells labelled by
� ∈ (�1, �2). The HamiltonianH(�) is a strictly monotone smooth function of� only.
(Note that a change ofH as a function of� does not change the geometrical structure
of the trajectories. Only the velocity at which the trajectory is followed by the system is
changed.) In the following we will allow for an additional parameter dependence of the
function H(�).

For later use, a new atlas(Uj , (κ
(j))) (j ∈ J , J index set) is defined on the strip of

energy shellsI := {(p, q) ∈ M|(p, q) ∈ ⋃
�∈(�1,�2)

S(H(�))}, where the first coordinate
κ1 is identified with the phase space volume�: κ1 := �. The other coordinates are chosen
such that changes from one chart to the otherdo not depend onκ1, i.e. (∂κ

(j)

k /∂κ1)(i) = 0
(k = 2, . . . , 2n, j, i ∈ J ), and the microcanonical densityρ takes the formρ = δ(�0 − κ1),
where �0 is the phase space volume of the energy shell considered. (Note that these
conditions do not determine the coordinates uniquely.)

We now introduce a slight generalization of the so-called canonical families [9]†.
Consider a family of parameter-dependent smooth canonical transformations8(p, q, Q)

of M onto itself, depending smoothly onk external parametersQ ∈ Rk. The family of
Hamiltonian systems generated by functionsH2(p, q, Q) := H(�(8−1(p, q, Q)), Q) is
called ageneralized canonical family. By construction the dynamics underH2 are ergodic
on the energy shells with� ∈ (�1, �2) for all Q, providedH is strictly monotone in�.

Besides� no other global invariants of the flow generated byH(p, q) exist, and
therefore the only symplectic flows9 on I leaving � invariant are generated by the
Hamiltonian functions of typeχ(�, Q) ∈ C2(I × Rk) [16], which generate a flow along
the trajectories of the system (for example,9 = exp(−{χ, •}), where{•, •} denotes the
Poisson bracket). Therefore the canonical transformations8 are not uniquely determined
for a given canonical family. In the construction of generalized canonical families we have
the gauge freedom of choosing any8 ◦ 9.

The reaction of the above system to adiabatic changes of the external parametersQ is
described by Kazuga’s adiabatic theorem for ergodic Hamiltonian systems [10], which can
be outlined as follows. For almost all initial conditions on an appropriate energy shell the
phase space volume� that is enclosed by the instantaneous energy shell is constant along
the trajectory in the adiabatic limit (for details see [10]).

In the next section a generalized canonical family will be embedded into a slow–fast
system by considering the parametersQ as configurations ofk additional slow degrees of
freedom.

† The notation has been changed compared to [9].
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3. Hamiltonian slow–fast systems: adiabatic separation and fast equations of motion

Consider an autonomous Hamiltonian system that hask slow andn fast degrees of freedom,
being parametrized by canonical coordinates(P, Q) and (p, q), respectively. The rather
general Hamiltonian function

H(P, Q, p, q) := H1(P, Q) + H2(p, q, Q) (1)

defines a Hamiltonian flow on the symplectic phase space by the canonical equations of
motion (symplectic 2-formω2 = dP ∧ dQ + dp ∧ dq).

In order to introduce the separation of time scales by a factor of the adiabatic slowness
parameterε explicitly, we choose the following symplectic 2-formω2:

ω2 := 1

ε
dP ∧ dQ + dp ∧ dq. (2)

Then if H is of order zero in the adiabatic slowness parameterε, the characteristic time
scales for(P, Q) and (p, q) separate byε, andε → 0 corresponds to the adiabatic limit.
For H2(p, q, Q) we choose a generalized ergodic canonical family as given in the previous
section.

We now separate the slow from the fast dynamics in the adiabatic limit. Besides
the slow variablesP and Q, the phase space volume� of the fast subsystem is also
slow, i.e. its temporal change is of orderε. Therefore the system has effectively
(2k + 1) slow and (2n − 1) fast variables, in which the equations of motion will be
expressed in what follows. Using8−1(p, q, Q) to pull back the set of energy shells
KQ := {(p, q) ∈ M|�(8−1(p, q, Q)) ∈ (�1, �2)} for any Q onto I defines an atlas
(Uj , (κ

(j))) on KQ for everyQ. By construction, the changes from one chart to the other
do not depend onQ. The slow coordinatesP andQ remain unchanged by the coordinate
transformation.

In the new coordinates(P, Q, κ) the symplectic 2-formω2 and the Hamiltonian (1) are

ω2 = 1

ε
dPα ∧ dQα +

∑
i<j

Bij dκi ∧ dκi + Ciα dQα ∧ dκi +
∑
α<β

Fαβ dQα ∧ dQβ (3)

and

H(P, Q, κ1) = H1(P, Q) + H2(κ1, Q) (4)

where the Lagrange brackets have been abbreviated as follows

Bij := ∂p

∂κi

∂q

∂κj

− ∂p

∂κj

∂q

∂κi

Ciα := ∂p

∂Qα

∂q

∂κi

− ∂p

∂κi

∂q

∂Qα

Fαβ := ∂p

∂Qα

∂q

∂Qβ

− ∂p

∂Qβ

∂q

∂Qα

(5)

(here and in the following we use the summation convention: greek or roman indices run
from 1 to k or 1 to 2n, respectively). Note that, in general, onlyC1α andFαβ are smooth
functions onK := {(P, Q, p, q)|(p, q) ∈ KQ}. The otherCiα and Bij are not invariant
under a change of chart. The Hamiltonian function (4) does not depend on the coordinates
κi (i = 2, . . . , 2n).

Within the symplectic formalism [17] the following exact equations of motion for the
slow–fast system are obtained (dotted quantities denote their derivative with respect to time)

Ṗα = −ε
∂H

∂Qα

+ ε
(
B−1

)
i1 Ciα

∂H2

∂κ1
+ ε2

( (
B−1

)
ij

CiαCjβ︸ ︷︷ ︸
≡−Fαβ

+Fαβ

)
∂H1

∂Pβ

(6a)
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Q̇α = ε
∂H1

∂Pα

(6b)

κ̇i = (
B−1

)
i1

∂H2

∂κ1
+ ε

(
B−1

)
ij

Cjα

∂H1

∂Pα

. (6c)

Note that the last term in (6a) vanishes exactly as can be shown by simple algebraic
manipulation, and(B−1) does not depend onQ for canonical families. The term(B−1)i1Ciα

is invariant under change of chart and is therefore a smooth function on phase space.
Kazuga’s adiabatic theorem therefore justifies averaging the above equations of motion for
P , Q and κ1, yielding an approximation for the slow motion to zeroth order inε. Since
〈(B−1)i1Ciα〉 = 0 (see [10]),κ1 is constant to zeroth order and the only force acting from
the fast subsystem onto the slow one is the Born–Oppenheimer potential force∂H2/∂Qα.

Fixing a given set of coordinates(P, Q, κ), define

ν2 := Ciα dQα ∧ dκi +
∑
α<β

Fαβ dQα ∧ dQβ

as a 2-form overK that depends on the coordinates(P, Q, κ) chosen to define it. The
2-forms defined for different gauges transform into each other through

ν2′ = ν2 − ∂

∂κ1

∂χ

∂Qα

dQα ∧ dκ1

where χ(κ1, Q) is the generating function of the gauge transformation as described in
section 2. Sinceν2 is closed andK is assumed to be simply connected,ν2 is exact onK
such that a 1-formAα dQα exists satisfying dAα ∧ dQα = ν2. A change of gauge generated
by χ(κ1, Q) induces a change inAα given by

A′
α = Aα + ∂

∂Qα

χ(κ1, Q). (7)

Using a givenA, define the scalar functionf (P, Q, κ) := −(1/ω)∂H/∂Pα(Aα − 〈Aα〉) on
K (ω = ∂H2/∂κ1). Now perform a second coordinate transformation, choosing

P̃α := Pα + εAα κ̃1 := κ1 + εf.

Expressed in these new coordinates the equations of motion of the slow variables become

˙̃
P α = −ε

∂H

∂Qα

+ ε2 ∂Aβ

∂Qα

∂H

∂Pβ

(8a)

Q̇α = ε
∂H

∂Pα

(8b)

˙̃κ1 = ε2

[
∂f

∂Qα

∂H

∂Pα

− ∂f

∂Pα

∂H

∂Qα

]
+ ε2

(
B−1

)
ij

∂H

∂Pα

∂Aα

∂κi

∂f

∂κj

+ε2
(
B−1

)
1j

∂H

∂κ1

∂Aα

∂κj

∂f

∂Pα

+ O
(
ε3

)
. (8c)

The fast degrees of freedom (i = 2, . . . , 2n) follow the equations of motion

κ̇i = (
B−1

)
i1 ω − ε

(
B−1

)
ij

∂H

∂Pα

∂Aα

∂κj

(8d)

which will be needed in the following section. Averaging (8a), (8b) and (8c) yields the
following effective Hamiltonian system for the slow degrees of freedom:

ω2 = 1

ε
dP̃α ∧ dQα



3294 C G Schroer

H(P̃ − ε〈A〉(Q, κ̃1), Q, κ̃1) = H1(P̃ − ε〈A〉(Q, κ̃1), Q) + H2(κ̃1, Q)

for fixed adiabatic invariant̃κ1. Since the higher-order terms in (8c) are bounded, they
do not contribute in the order considered here. In first-order adiabatic approximation a
gauge force generated by the gauge potential〈A〉 known as ‘geometric magnetism’ acts on
the slow freedoms in addition to the Born–Oppenheimer potential force, and the adiabatic
invariant κ̃1 is conserved to first order, since the terms of orderε2 in (8c) vanish after
averaging. This latter fact leads to the measurability of the first-order adiabatic correction
to the tempus considered in the next section (see also [15]).

The slow dynamics to first order in the adiabatic slowness parameter have been
investigated by Berry and Robbins in [18]. An alternative approach using the purely classical
methods of this paper will published elsewhere [14].

4. Holonomy in ergodic dynamics: ‘geometric tempus’

When deriving a geometric effect for ergodic fast dynamics two major obstacles must be
overcome. Firstly, in contrast to holonomy for integrable systems, a geometric effect for
the ergodic fast dynamics will not result in a smooth shift on the energy shell, because of
sensitive dependence on initial conditions (n > 1) [11]. Even if the system is not changed
parametrically the state of the system after an infinitely long ergodic evolution does not
depend smoothly on the initial conditions. This is inherent to the chaotic evolution of
ergodic systems with more than one degree of freedom. Therefore a search for a holonomic
shift on the energy shell does not make sense. Furthermore, it would be tempting to
investigate the coordinate canonically conjugate to the adiabatically invariant phase space
volumeκ1 = �, but for general ergodic systems (n > 1) such a global coordinate does not
exist.

In spite of these complications, it is still possible to derive a holonomy in ergodic
systems. For this purpose, we investigate the first differentialω1 of a quantityθ that is
locally canonically conjugate to the phase space volumeκ1 for fixed slow configurations
Q. The local condition for canonical conjugation ofθ andκ1 is expressed in terms of the
Poisson bracket of the fast subsystem

δ1i
!= {θ, κi} = ω1

((
B−1

)
dκi

)
(9)

where the second equality follows from the symplectic formalism of Hamiltonian mechanics
(see [17], p 215). Equation (9) determines the 1-formω1 uniquely

ω1 = B1i dκi (10)

and B1i is the smooth Lagrange bracket given by (5). Integratingω1 along the trajectory
with some initial condition(P (0), Q(0), κ(0)) and inserting (8d) for κ̇i yields

θ(t) =
∫

dtB1i κ̇i =
∫

dtω(κ̃1, Q) − ε

∫
dt

∂Aα

∂κ1

∂H

∂Pα

=
∫

dtω(κ̃1, Q) + ε

∫
dtC1α

∂H

∂Pα

(11)

where(ω(κ̃1, Q) = ∂H2/∂κ1) is an analogue of the angular velocity in integrable systems.
WhenQ is fixed, the integralθ(t) is proportional to time and therefore the name ‘tempus’
is proposed for this quantity. (Note that the tempus is measured in units of(action)1−n

rather than in units of time.)
If Q is varied, the tempus depends not only on the initial conditions on the energy shell

but also on the choice ofκ-coordinates. In general its computation is rather complicated
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and depends on all the details of the motion. In the adiabatic limit an averaging theorem for
smooth observables applies, and the computation of the tempus is greatly simplified. This
averaging theorem can be outlined as follows.

In the adiabatic limit a time average of a smooth observableA along a generic trajectory
can be replaced by the time average of the averaged observable along the trajectory of the
averaged system:∫

dtA(P (t), Q(t), p(t), q(t))
ε→0−→

∫
dt〈A〉(P̄ (t), Q̄(t)κ1). (12)

Here P̄ (t) and Q̄(t) denote the trajectory of the averaged system. SinceC1α is a smooth
function by construction of the atlas(Uj , (κ)j ) in section 2, the tempus can be averaged.
Averaging (11) yields

θ̄ =
∫

dtω(κ̃1, Q(t))︸ ︷︷ ︸
=:1θdyn

+ ε

∫
γ

dQα〈C1α〉κ1,Q︸ ︷︷ ︸
=:1θgeo

(13)

and the tempus divides naturally into adynamical (1θdyn) and ageometricalpart (1θgeo).
γ denotes the curve in slow configuration space, along whichQ evolves adiabatically. The
geometric part does not depend explicitly on time but solely on the geometric properties of
γ . Note that the error produced by averaging the dynamical part is smaller than first order,
sinceκ̃1 varies by terms of orderε2. Therefore it is possible to resolve the geometric part,
which is of order one inε (see [15]).

For general curvesγ the tempus and thus the geometric tempus cannot be defined gauge
invariantly. Choosing closed curves (cycles) forγ , however, allows for defining a gauge
invariant geometric tempus. Consider a gauge transformation generated byχ as described
in section 2.C1α transforms according to

C1α = C ′
1α + ∂

∂Qα

∂χ

∂κ1
+ (

B−1
)
i1 Ciα

∂2χ

∂κ1
2

where the prime denotes the quantities calculated with respect to the new coordinates. The
last term on the right vanishes (see p 3293) after averaging, and considering only cycles
for γ makes the contribution from the closed form(∂/∂Qα)/(∂χ/∂κ1)dQα vanish as well,
provided theQ-space is simply connected. Thus the geometric tempus is invariant under
gauge transformations described in section 2 for cyclesγ .

A change of the atlas(Uj , (κ)j ) is, in general, composed of two transformations: a
local change of coordinates fulfiling(∂κ

(j)

k /∂κ1)(i) = 0 (k = 2, . . . , 2n, j, i ∈ J ) and
a global smooth measure preserving transformation that leavesκ1 unchanged. The first
local transformation does not affect the quantities considered here. Under the second
transformation we have

C1α = C ′
1α +

2n∑
i=2

C ′
iα

∂κ̃i

∂κ1
(14)

where the primed quantities are calculated in the new coordinates. Averaging the last term
in (14) and using (5) yields〈

2n∑
i=2

C ′
iα

∂κ̃i

∂κ1

〉
= ∂

∂Qα

〈
2n∑
i=2

(
p

∂q

∂κ̃i

)
∂κ̃i

∂κ1

〉
−

〈
2n∑
i=2

∂

∂κ̃i

(
p

∂q

∂Qα

)
∂κ̃i

∂κ1

〉
.
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The first term on the left is closed onQ-space and vanishes under integration around a
closed loopγ . The other term can be transformed into〈

2n∑
i=2

∂

∂κ̃i

(
p

∂q

∂Qα

)
∂κ̃i

∂κ1

〉
=

〈
2n∑
i=2

∂

∂κ̃i

(
p

∂q

∂Qα

∂κ̃i

∂κ1

)〉
−

〈
2n∑
i=2

(
p

∂q

∂Qα

)
∂

∂κ̃i

∂κ̃i

∂κ1

〉
≡ 0.

Since the first term on the left is exact inκ̃i (i = 2, . . . , 2n), its average vanishes because the
energy shell has no boundary. The second term vanishes becauseT is measure preserving
and thus(∂/∂κ̃i)/(∂κ̃i/κ1) = 0.

While the gauge transformations discussed in section 2 are local inQ, the latter
transformation is global onQ-space. Note that, in contrast to the integrable case, there exists
a global gauge dependence ofC1α. The external derivative d〈Ciα〉 ( d· = (∂./∂Qα)κ dQα)
is independent under both gauge transformations, and thus the geometric tempus is well
defined for closed curvesγ in Q-space.

Considering cyclesγ only, the geometric tempus can be expressed as

1θgeo = − ∂

∂κ1

∮
γ

〈
p

∂q

∂Qα

〉
dQα (15)

and if the cycleγ can be contracted continuously to a point, the application of Stokes’
theorem yields

1θgeo = − ∂

∂κ1

∮
γ

〈p dq〉 = − ∂

∂κ1

∫
A

〈 dp ∧ dq〉 (16)

where A is any two-dimensional surface bordered byγ (δA = γ ). Equation (16) is
completely analogous to Hannay’s 2-form. The main difference lies in the average, which
is taken with respect to the microcanonical measure rather than over the ergodic measure
on ann-torus, and the coordinatesκ are held fixed when taking the external derivative with
respect toQ rather than fixing the angle action variables(I, θ). The geometrical character
of 1θgeo is clearly visible, because (16) does not depend on the dynamics of the system,
but only on the geometrical properties of the energy shell. The 2-form obtained is identical
with the Robbins–Berry 2-form for canonical families [8, 9].

In the case of one fast degree of freedom (n = 1) the phase space volumeκ1 coincides
with 2π times the actionI . κ2 is proportional to some angle variableθ (κ2 = 1/(2π)θ ).
The tempus then coincides withθ/(2π) and the geometric tempus is 1/(2π) times Hannay’s
angle.

In the language of differential geometry the tempus can be interpreted as follows (see
[11, 19]). The adiabatic transport defines a connection on the principal fibre bundleG× Rk

that has the groupG of invariant flows9 as its fibre and the slow configuration spaceRk

as its base. In case of ergodic fast dynamicsG is non-compact and isomorphic toR (see
section 2 and [11]). The tempus is an element of the groupG, and the geometric tempus
(13) describes the adiabatic connection on the principal fibre bundleG×Rk, (16) being the
holonomy of this connection.

This holonomy cannot be measured as a smooth shift in the final state of the system,
since the final state depends sensitively on the initial conditions. The tempus must therefore
be observed directly, requiring the observation of the fast dynamics during the whole
evolution.

5. Conclusions

The symplectic formalism of Hamiltonian mechanics has been found to be a powerful tool
to express the equations of motion in coordinates suited to separate slow and fast parts of
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the dynamics of slow–fast systems. The representation in these coordinates is crucial to
distinguish between dynamical and geometrical effects.

For the first time a holonomy effect in a class of ergodic (and possibly chaotic) classical
Hamiltonian systems has been derived, the ‘geometric tempus’. It depends smoothly on
initial conditions and is independent of the choice of coordinates on the energy shell. It
is observable, but its measurement requires the observation of the system along the whole
trajectory rather than the measurement of the initial and final state only, due to the sensitive
dependence on initial conditions for chaotic systems.

One-dimensional ergodic systems are at the same time integrable and the geometric
tempus differs from Hannay’s angle only by a factor of 1/(2π). The 2-form describing the
curvature of the adiabatic connection has a structure analogous to Hannay’s 2-form [1, 7].
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